Rapid Modulation of Spinach Leaf Nitrate Reductase by Photosynthesis : II. In Vitro Modulation by ATP and AMP.
نویسندگان
چکیده
Assimilatory nitrate reductase activity (NRA) in crude spinach leaf (Spinacia oleracea) extracts undergoes rapid changes following fluctuations in photosynthesis brought about by changes in external CO(2) or by water stress (WM Kaiser, E Brendle-Behnisch [1991] Plant Physiol 96:363-367). A modulation of NRA sharing several characteristics (stability, response to Mg(2+) or Ca(2+), kinetic constants) with the in vivo modulation was obtained in vitro by preincubating desalted leaf extracts with physiological concentrations of Mg(2+) and ATP (deactivating) or AMP (activating). When nitrate reductase (NR) was inactivated in vivo by illuminating leaves at the CO(2) compensation point, it could be reactivated in vitro by incubating leaf extracts with AMP. For the in vitro inactivation, ATP could be replaced by GTP or UTP. Nonhydrolyzable ATP analogs (beta, gamma-imido ATP, beta, gamma-methyl-ATP) had no effect on NR, whereas gamma-S-ATP caused an irreversible inactivation. This suggests that NR modulation involves ATP hydrolysis. In contrast to NR in crude leaf extracts, partially purified NR did not respond to ATP or AMP. ATP and AMP levels in whole leaf extracts changed in the way predicted by the modulation of NRA when leaves were transferred from photosynthesizing (low ATP/AMP) to photorespiratory (high ATP/AMP) conditions. Adenine nucleotide levels in leaves could be effectively manipulated by feeding mannose through the leaf petiole. NRA followed these changes as expected from the in vitro results. This suggests that cytosolic ATP/AMP levels are indeed the central link between NRA in the cytosol and photosynthesis in the chloroplast. Phosphorylation/dephosphorylation of NR or of NR-regulating protein factors is discussed as a mechanism for a reversible modulation of NR by ATP and AMP.
منابع مشابه
Rapid Modulation of Spinach Leaf Nitrate Reductase Activity by Photosynthesis : I. Modulation in Vivo by CO(2) Availability.
It has been shown recently that in spinach leaves (Spinacia oleracea) net photosynthesis and nitrate reduction are closely linked: when net photosynthesis was low because of stomatal closure, rates of nitrate reduction decreased (WM Kaiser, J Förster [1989] Plant Physiol 91: 970-974). Here we present evidence that photosynthesis regulates nitrate reduction by modulating nitrate reductase activi...
متن کاملComparative studies of the light modulation of nitrate reductase and sucrose-phosphate synthase activities in spinach leaves.
We recently obtained evidence that the activity of spinach (Spinacia oleracea L.) leaf nitrate reductase (NR) responds rapidly and reversibly to light/dark transitions by a mechanism that is strongly correlated with protein phosphorylation. Phosphorylation of the NR protein appears to increase sensitivity to Mg(2+) inhibition, without affecting activity in the absence of Mg(2+). In the present ...
متن کاملUptake and nitrate accumulation affected by partial replacement of nitrate-N with different source of amino acids in spinach and lettuce
As natural plant growth stimulators, amino acids are widely used to improve the yield and quality of crops. Change in enzymes activities of N assimilation (NR, NiR and GS), residual nitrate (NO3-), soluble protein content, and yield of spinach and lettuce plants were investigated under replacing 20% nitrate-N in the nutrient solution by L-glycine and blood meal amino acids. Seeds of the mention...
متن کاملIdentification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase.
Spinach leaf NADH:nitrate reductase (NR) responds to light/dark signals and photosynthetic activity in part as a result of rapid regulation by reversible protein phosphorylation. We have identified the major regulatory phosphorylation site as Ser-543, which is located in the hinge 1 region connecting the cytochrome b domain with the molybdenum-pterin cofactor binding domain of NR, using recombi...
متن کاملPhotosynthesis, Nitrogen Metabolism and Antioxidant Defense System in B-Deficient tea (Camellia sinensis (L.) O. Kuntze) Plants
Response of tea plants to B deficiency was studied in hydroponic medium under environmentally controlled conditions. Plants height, number of leaves and dry matter production of shoot and root were significantly decreased by B deficiency. Concentration of chlorophyll, carotenoids, anthocyanins and flavonoids was not affected by B deficiency in the young leaf, while a significant reduction of Ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 96 2 شماره
صفحات -
تاریخ انتشار 1991